The aim of the studyis a probabilistic description of the functioning of the cognitive system, taking into account its internal logic and interaction with the external environment.Such concepts of cognitive theory as sensory imaginative representations, models, systems are the most common, so the attempt to formalize them is by obtaining the most common results. One of the key concepts of cognitive theory is Gestalt, which is understood in this work as a kind of holistic perception of the sensual image, as well as the sensual image. Formalization (mathematical description) of Gestalt, as well as other concepts of cognitive theory meets the natural difficulties associated with the uncertainty of these concepts. On the other hand, there are well-developed mathematical models of behavior of quite specific organizational systems, allowing obtaining meaningful results. In this regard, the mathematical description of a wide class of cognitive systems, not limited to the specific content of their functioning, is an urgent task. In this study, it is assumed that sensory images occur at random times and affect the cognitive system with certain probabilities. In this regard, one of the adequate mathematical tools are, apparently, probability-theoretic methods, in particular, the application of the theory of Markov processes. The methodof research within the framework of the adopted model is the application of the theory of Markov processes developing at fixed points in time, i.e. Markov chains. It is believed that the functioning of the cognitive system is described by abstract probabilities of changes in the system states. This approach allows formalizing the processes of representation of sensory images in the cognitive system, taking into account both the internal logic of the system and the interaction of the system with the outside world. The main attention is paid to the study of the influence on the behavior of the system external to her sensual images.As a resultof the study shows that the inclusion of the interactions of the system is achieved by introducing the stochastic matrix of probabilities of the system response to external influences. Taking into account the well-developed theory of Markov chains, analytical expressions for the probabilities of the system in each of the possible states are obtained. The influence on the behavior of the system of elements of the matrix of probability reactions of the system is investigated, the corresponding graphs are presented. The asymptotic behavior of the system is studied with an unlimited increase in the number of steps that change the state of the system, as well as the average characteristics of the system. It is noted that the presented description is formal, operates only with probabilistic characteristics of the system and does not take into account specific signals that can enter the system from its sensors, and generally sensitive elements. In this regard, the further development of the model may be associated with the assessment of the probability of the system response to external influences, taking into account the characteristics of these specific signals, as well as the development of optimal algorithms for decision-making about the presence or absence of impacts on the system from the outside world.
Read full abstract