Reduced-order identification algorithms are usually used in machine learning and big data technologies, where the large-scale systems widely exist. For large-scale system identification, traditional least squares algorithm involves high-order matrix inverse calculation, while traditional gradient descent algorithm has slow convergence rates. The reduced-order algorithm proposed in this paper has some advantages over the previous work: (1) via sequential partitioning of the parameter vector, the calculation of the inverse of a high-order matrix can be reduced to low-order matrix inverse calculations; (2) has a better conditioned information matrix than that of the gradient descent algorithm, thus has faster convergence rates; (3) its convergence rates can be increased by using the Aitken acceleration method, therefore the reduced-order based Aitken algorithm is at least quadratic convergent and has no limitation on the step-size. The properties of the reduced-order algorithm are also given. Simulation results demonstrate the effectiveness of the proposed algorithm.
Read full abstract