Various functional equations satisfied by one or two (N × N)-matrices \({\mathbf{F}(z) }\) and \({\mathbf{G}(z) }\) depending on the scalar variable z are investigated, with N an arbitrary positive integer. Some of these functional equations are generalizations to the matrix case (N > 1) of well-known functional equations valid in the scalar (N = 1) case, such as \({\mathbf{F}(x) \, \mathbf{F}(y) = \, \mathbf{F}(x y) \, \rm and \, \mathbf{G}({\it x}) \, \mathbf{G}({\it y}) = \mathbf{G}({\it x+y}) }\); others—such as \({\mathbf{G}(y) \, \mathbf{F}(x) = \mathbf{F}(x) \, \mathbf{G}(xy) }\)—possess nontrivial solutions only in the matrix case (N > 1), namely their scalar (N = 1) counterparts only feature quite trivial solutions. It is also pointed out that if two (N × N)-matrices \({\mathbf{F}(x) \, \rm and \, \mathbf{G}({\it y})}\) satisfy the triplet of functional equations written above—and nontrivial examples of such matrices are exhibited— then they also satisfy an endless hierarchy of matrix functional relations involving an increasing number of scalar independent variables, the first items of which read \({\mathbf{F}(x_{1}) \, \mathbf{G}(y_{1}) \, \mathbf{F} (x_{2}) = \mathbf{F}(x_{1} x_{2}) \, \mathbf{G } (x_{2} y_{1}) \, \rm and \, \mathbf{G}({\it y}_{1}) \, \mathbf{F} ({\it x}_{1}) \, \mathbf{G} ({\it y}_{2}) = \mathbf{F} ({\it x}_{1}) \, \mathbf{G} ({\it x}_{1} {\it y}_{1}+{\it y}_{2}) }\).
Read full abstract