During the grinding process, the crushing of minerals mainly depends on the impact action of the grinding medium. Based on the JK drop weight test data of quartz and pyrrhotite and the research results of their impact crushing characteristic parameters, this paper calculates the specific crushing energy (Ecs) of mineral samples subjected to impact in a ball mill using the grinding medium motion theory and then calculates the cumulative particle size distribution under screening under any mesh size using the JK drop weight test method. On this basis, the breakage distribution function of mineral samples is calculated, and a selection function is obtained based on grinding experiments. Finally, using Matlab programming and function-fitting mathematical methods, as well as a particle size population balance dynamics simulation of grinding, the particle size distribution characteristics of the grinding products of the two mineral samples in the mill that are only subjected to impact action are calculated. The results show that the selection function of quartz and pyrrhotite decreases overall with the prolongation of the grinding time, and the selection function of the coarse particle size changes more significantly than that of the fine particle size. At the same time, the selection function decreases with the decrease in feed particle size, and the smaller the feed particle size, the lower the probability of impact crushing. The Ecs values of quartz and pyrrhotite at each particle level in the mill are different, and the degree of mineral crushing is closely related to the impact energy, feed particle size, and mineral properties.