Species-specific binding between the flagellar surfaces of mating types plus and minus (mt+ and mt-) gametes of Chlamydomonas eugametos is mediated by mating type-specific agglutinins. Their interaction triggers several mating responses that are necessary for cell fusion, such as flagellar twitching, flagellar tip activation, redistribution of agglutinin molecules to the flagellar tip (tipping), and mating structure activation. Earlier, we reported that a monoclonal antibody (mAb 66.3) can induce mating reactions by cross-linking the agglutinins (Homan, W. L., A. Musgrave, H. de Nobel, R. Wagter, A. H. J. Kolk, D. de Wit, and H. van den Ende. 1988. J. Cell Biol. 107:177-189). Here we report that the lectin wheat germ agglutinin (WGA), which does not bind to the agglutinins, can also invoke all these mating reactions. We show, by immunofluorescence studies using anti-WGA and an agglutinin-specific monoclonal antibody (mAb 66.3), that WGA induces the redistribution of agglutinin to the flagellar tips of mt- gametes. Vice versa, when agglutinin tipping is induced by mAb 66.3, the WGA-binding glycoproteins are also tipped. Under the same conditions, the major flagellar glycoproteins are not redistributed, indicating that membrane transport is limited to a few components. We conclude that each agglutinin is associated with a WGA-binding glycoprotein. When cells lacking agglutinin or cells possessing inactive agglutinins are treated with WGA, mating responses are again elicited. The data suggest that clustering of agglutinin-containing complexes results in the production of intracellular signals, such as cAMP, and the coupling of the complex to a force generating system. In nature, the complexes are clustered via the agglutinins, but artificially they can be clustered by lectins or antibodies directed against other proteins in the complex.