Protein-RNA interactions play vital roles in plethora of biological processes such as regulation of gene expression, protein synthesis, mRNA processing and biogenesis. Identification of RNA-binding residues (RBRs) in proteins is essential to understand RNA-mediated protein functioning, to perform site-directed mutagenesis and to develop novel targeted drug therapies. Moreover, the extensive gap between sequence and structural data restricts the identification of binding sites in unsolved structures. However, efficient use of computational methods demanding only sequence to identify binding residues can bridge this huge sequence-structure gap. In this study, we have extensively studied protein-RNA interface in known RNA-binding proteins (RBPs). We find that the interface is highly enriched in basic and polar residues with Gly being the most common interface neighbor. We investigated several amino acid features and developed a method to predict putative RBRs from amino acid sequence. We have implemented balanced random forest (BRF) classifier with local residue features of protein sequences for prediction. With 5-fold cross-validations, the sequence pattern derived dipeptide composition based BRF model (DCP-BRF) resulted in an accuracy of 87.9%, specificity of 88.8%, sensitivity of 82.2%, Mathew's correlation coefficient of 0.60 and AUC of 0.93, performing better than few existing methods. We further validated our prediction model on known human RBPs through RBR prediction and could map ~54% of them. Further, knowledge of binding site preferences obtained from computational predictions combined with experimental validations of potential RNA binding sites can enhance our understanding of protein-RNA interactions. This may serve to accelerate investigations on functional roles of many novel RBPs.
Read full abstract