In these days of tight budgets and pressure to improve retention rates for science and engineering majors, many mathematics departments want to know what works, what are the most productive means of improving the effectiveness of calculus instruction. This was the impetus behind the study of Characteristics of Successful Programs in College Calculus undertaken by the Mathematical Association of America. The study consisted of a national survey in fall 2010, followed by case study visits to seventeen institutions that were identified as “successful” because of their success in retention and the maintenance of “productive disposition,” defined in [NRC 2001] as “habitual inclination to see mathematics as sensible, useful, and worthwhile, coupled with a belief in diligence and one’s own efficacy.” Our survey revealed that Calculus I, as taught in our colleges and universities, is extremely efficient at lowering student confidence, enjoyment of mathematics, and desire to continue in a field that requires further mathematics. The institutions we selected bucked this trend. This report draws on our experiences at all seventeen colleges and universities but focuses on the insights drawn from those universities that offer a PhD in mathematics, the universities that both produce the largest numbers of science and engineering majors and that often struggle with how to balance the maintenance of high-quality research with attention to undergraduate education. Case studies were conducted in the fall of 2012 at five of these universities: two large public research universities, one large private research university, one public technical university, and one private technical institute. We shall refer to these as: PrTI: Private Technical Intitute. Private university. Data from nine sections of calculus with an average enrollment of 33.
Read full abstract