Leukolectins (LL) belong to the tectonin-family of proteins, with functions in innate immunity. Fish larvae compensating for loss of maternal chorionic protection post-hatching, provide a model-system for studying how lectins contribute to immunity. Atlantic salmon (Ssal) LL-proteins function after secretion in mucus from dermal lectocytes, as this mucus envelops embryos and larvae. The Ssalll-gene possesses multiple putative binding sites for diverse transcription-factors, suggestive of LL-functions in non-epithelial cells. Since zebrafish (zF) perivitelline fluid (PVF) contains LL-proteins, this study aims to characterize zF-leukolectins, their cellular origin, expression and gene structure. Extracts of (10 hpf) zF-embryos contained LL-proteins, and whole mount immuno-histochemistry revealed dispersed LL-positive cells including zF-lectocytes, accounting for exocrine LL-secretion by embryos. Lectocytes are lcp1-negative, but other zF-cells co-expressed LL-proteins and lcp1-transcripts, which (at this stage) identified such non-lectocytes as early macrophages (termed lectophages). In sections, LL-expression characterized large macrophage-progenitors and smaller colonizing macrophages. RT- and RACE-PCR yielded zF-LLcDNA including parts of untranslated regions. ORF encoded 255 AAs including (19 AA) signal peptide. Processing of a primary LL-transcript to (∼1.300 nt) LL-mRNA was suggested by Northern blots. Most zebrafish-egg lectins (zFELs) possess four TECPR-domains, while five TECPR-domains were predicted for zF-LL. Minor sequence variations suggested nearly identical zF-LL isoforms. Alignment of zFEL-proteins predicted a zFEL-tree with a separate leukolectin-branch. LL-amplification using zF-DNA, revealed five exons and four introns. Predicted structures of zF- and Ssal-leukolectins showed strong structural conservation (92% sequence-identity) with shorter zF-introns 2&4, but identical introns 1&3. Non-lectocytic LL-functions were investigated further by dual in situ hybridization, revealing that only some embryonic lcp1-expressing cells in early zF-embryos co-expressed LL-transcripts. Macrophages from erythro-myeloid progenitor (EMP) are known to colonize zebrafish tissues as resident macrophages (TRM), e.g. nervous system (CNS) and epiderm. Unlike Ssal-larvae relying on yolk for months, zF-larvae switch within days to nutrition from the digestive-tract, necessitating additional immuno-protection possibly from TRMs. EMP also gives rise to microglia, the TRM of CNS. The neural tube of zF-embryos exhibited numerous small, LL-positive cells, presumably stemming from lectophage-progenitors. Functions of these LL-positive embryonic microglia (lectoglia) appear more relevant for tissue remodelling than for pathogenic threats. Lectoglia sustaining CNS-neurons suggests physiological LL-roles relevant for adult health and disease. The data focus the need for resolving whether lectophages represent an unrecognized myelogenic lineage, or whether instead, LL-expression occurs in a subpopulation of the early macrophage-lineage.
Read full abstract