Following olfactory classical conditioning, infant rats exhibit a preference for the conditioned odor and exhibit enhanced uptake of focal 14C 2-deoxyglucose (2-DG) within the olfactory bulb. The present experiments assessed the role of respiration on the expression of the enhanced 2-DG uptake response. Pups were conditioned from postnatal day (PN) 1–18 with an olfactory stimulus paired with a reinforcing tactile stimulus which mimics maternal contact (Odor-Stroke). Control pups received odor only or tactile stimulation only. On PN 19, pups received 1 of 3 tests: 1) a two-odor choice test, 2) an odor/2-DG test with normal respiration allowed, or 3) an odor/2-DG test with respiration experimentally controlled. The results indicated that: 1) Odor-Stroke pups learned the conditioned odor preference, 2) Odor-Stroke, normally respiring pups exhibited enhanced olfactory bulb 2-DG uptake when compared to control pups No difference in respiration rate was detected between groups in normally respiring pups. 3) Odor-Stroke pups whose breathing was experimentally controlled exhibited enhanced olfactory bulb 2-DG uptake when compared to control pups with an identical number of respirations. Together, these results demonstrate that modified respiration during testing is not required for the expression of a modified olfactory bulb response to learned attractive odors. Therefore, the data suggest that the olfactory system itself is modified by early learning.
Read full abstract