Significance: The thermal energy transfer in nanofluid flow over an exponentially stretching surface has crucial practical configurations in various industrial processes, and it has potential applications in heat exchangers, chemical engineering, energy harvesting, and material processing. Purpose: This study is devoted to exploring the features of free convection in the thermally stratified, unsteady flow of Casson fluid over an inclined, exponentially stretching surface. Moreover, the implications of nonlinear thermal radiation, activation energy, and thermal/salute stratification effects are examined over the thermal energy transport distributions. Diffusion-thermo and thermo diffusion impressions are also taken into consideration. Methodology: By introducing reasonable transformations, partial differential equations are altered into ordinary differential equations. A nonlinear system of differential equations is solved numerically by employing the Midrich numerical technique. Findings: The impacts of diverse fluid parameters like the Soret/Dufour number, temperature difference parameter, radiation parameter, thermal/salute stratification parameter, magnetic parameter, and Prandtal number are assessed and depicted in plots by explaining the physical justifications of each parameter. Also, numerical values of sink friction and local Nusselt and Sherwood numbers are computed and examined for different values of pertinent variables involved in the problems. It is found that the rate of thermal energy transport is significantly enhanced by the larger estimation of the radiation parameter. Furthermore, it is perceived that the escalation in the temperature ratio constant leads to increased thermal convection in the fluid, while the larger thermal stratification constant decays the rate of heat transport in the fluid. Additionally, the rate of thermal transport is de-escalated due to the escalation in the intensity of thermal stratification parameter.
Read full abstract