The study is a metallographic analysis of commercial bone plates used for stabilizing long bones. The plates examined were delivered to the hospital in different years, and the course of treatment of patients with similar goniometric and anthropometric parameters varied dramatically. To determine the characteristics of displacement of bony fragments in the area of the simulated fracture and relate it to the strength parameters of the bone plate, experimental tests were carried out on composite femurs loaded according to the biomechanical loading model at known values of forces acting on the femoral head. In order to assess the influence of material parameters of the plate on the biomechanics of the bone–bone plate system, microstructural and strength tests were performed, i.e., three-point bending tests, chemical composition and hardness assessments, as well as evaluation of the state of internal stresses in the tested materials. The research conducted allowed us to develop guidelines for companies producing bone fixations and orthopedic surgeons who use bone plates to stabilize bones after mechanical trauma, allowing the plates to be tailored to individual patient characteristics.
Read full abstract