Selective laser heat treatment allows local modification of material properties and can have a wide range of applications within the automotive industry. Enhanced formability and strength are possible to achieve. As the process involves selective heating, positioning of the heat treatment pattern in local areas is vital. Pattern positioning is often suggested based on the part design and forming aspects of the material to avoid failures during manufacturing. Along with improving material properties in desired local areas, the process also produces unwanted distortion in the material. Such effects on variation should be considered and minimized. In this paper, the heat treatment pattern is offset from its original position and its effect on geometrical variation is investigated. Boron steel blanks are selectively laser heat treated with a specific heat treatment pattern and then cold formed to the desired shape. Two heat treatment pattern dimensions are examined. Geometrical variation at the blank level and after cold forming, and springback after cold forming are observed. Results show that pattern offsetting increases the effect on geometrical variation. Therefore, correct positioning of the heat treatment pattern is important to minimize its effect on geometrical variation along with enhancement in the material properties. Knowledge from this study will contribute to various stages of the geometry assurance process.
Read full abstract