A fotoluminescencia de filmes finos de 1-(3-metilfenil)-1,2,3,4-tetrahidroquinolina-6carboxialdeido-1,1’-difenilhidrazona foi monitorada em funcao da irradiacao com luz UV. A intensidade da emissao decresce exponencialmente com o tempo de exposicao, sugerindo degradacao das amostras. Com o objetivo de investigar os mecanismos de degradacao e determinar a estrutura eletronica desse material orgânico usado com sucesso como camada transportadora de buracos na fabricacao de diodos orgânicos emissores de luz (OLEDs), foram empregadas as tecnicas de fotoabsorcao e de fotoemissao nas bordas 1s do carbono e do nitrogenio bem como na banda de valencia. A influencia da luz solar foi simulada usando radiacao sincrotron nao-monocromatica. Apos exposicao, todos os espectros apresentam um decrescimo nos sinais de fotoabsorcao e de fotoemissao, que e menos acentuado na borda do carbono, apresentando, entretanto, um decrescimo drastico na borda do nitrogenio e na regiao de valencia. O estudo sugere que a perda de nitrogenio e a principal causa para a quebra do sistema π, levando, dessa forma, a falha do dispositivo fabricado com esse composto. Photoluminescence (PL) emission of 1-(3-methylphenyl)-1,2,3,4-tetrahydroquinoline-6carboxyaldehyde-1,1 ’ -diphenylhydrazone (MTCD) thin films was monitored as a function of UV irradiation, and it was found to decrease exponentially with the exposure time. In order to gain insight into the degradation mechanisms and evaluate the electronic structure of this organic material used with good results as hole transporting layer (HTL) in the fabrication of organic light emitting diodes (OLEDs), synchrotron radiation-based photoabsorption and photoemission techniques at the carbon and nitrogen 1s edges as well as at the valence band were employed. The influence of sunlight was simulated using non-monochromatized synchrotron radiation. After exposure all the spectra show a decrease of the photoabsorption and photoemission signals, however, while it is less accentuated at the carbon edge, at the nitrogen edge and at the valence region it decreases drastically. The loss of nitrogen is suggested to be the main step in the disruption of the π system, leading to the failure of the devices fabricated with this compound as hole transporting layer.