The abundance of industrial waste heat resources offers valuable opportunities for the utilization of phase change heat exchangers in clean energy applications. This study focuses on the innovative development of binary phase change material (PCM) composed of paraffin and stearic acid (SA) in various ratios, aimed at optimizing waste heat recovery. Comprehensive analyses of the phase change temperature, latent heat, and thermal conductivity of these mixtures were conducted. The research identified a mixture with a 20 % paraffin and 80 % stearic acid ratio, which exhibits a phase change temperature of 62.73 °C and a latent heat of 205.53 J/g. This mixture stands out due to its minimal subcooling and consistent thermal properties, making it highly effective for low-temperature waste heat recovery. Additionally, a novel process design and simulation system for using these materials in heat exchangers to convert intermittent industrial waste heat into continuous thermal energy for heating were developed.
Read full abstract