Material extrusion 3D printing (ME3DP) combined with sintering is a low-cost additive manufacturing technique for fabricating components of difficult-to-print metals, such as copper, aluminum, and ceramics. However, the sintering process includes complex material science, such as volumetric shrinkage and free structural bending, to identify the relative density and deformation of a 3D printed sample. The prediction of the relative density and deformations during the sintering process provides information to the design engineer to optimize the design of the CAD model before sintering. In this study, a phenomenological model based on constitutive equations was developed to predict the density and structural deformation during the sintering process of pure copper components fabricated by ME3DP using metal injection molding feedstock. The densification rate was determined using shrinkage estimation with an isothermal stairway heating cycle in a vertical dilatometer. Furthermore, different sets of experiments were performed with a load on the probe with long isothermal heating cycles at 850, 900, 950, 1000, and 1050 °C in a vertical dilatometer to estimate the axial viscosity of the copper. The constitutive equations were solved using the solid mechanics module with user-defined creep in COMSOL Multiphysics by considering isotropic assumptions. Two types of geometries, cube and overhanging I section, were used to predict shrinkage and deformation during the sintering process. The developed model successfully predicted the relative density based on shrinkage and structural deformation owing to gravity during the sintering process.