Abstract

In this study, specific additives were incorporated in polyhydroxyalcanoate (PHB) and polylactic acid (PLA) blend to improve its compatibility, and so enhance the cell metabolic activity of scaffolds for tissue engineering. The formulations were manufactured through material extrusion (MEX) additive manufacturing (AM) technology. As additives, petroleum-based poly(ethylene) with glicidyl metacrylate (EGM) and methyl acrylate-co-glycidyl methacrylate (EMAG); poly(styrene-co-maleic anhydride) copolymer (Xibond); and bio-based epoxidized linseed oil (ELO) were used. On one hand, standard geometries manufactured were assessed to evaluate the compatibilizing effect. The additives improved the compatibility of PHB/PLA blend, highlighting the effect of EMAG and ELO in ductile properties. The processability was also enhanced for the decrease in melt temperature as well as the improvement of thermal stability. On the other hand, manufactured scaffolds were evaluated for the purpose of bone regeneration. The mean pore size and porosity exhibited values between 675 and 718 μm and 50 and 53%, respectively. According to the results, the compression stress was higher (11–13 MPa) than the required for trabecular bones (5–10 MPa). The best results in cell metabolic activity were obtained by incorporating ELO and Xibond due to the decrease in water contact angle, showing a stable cell attachment after 7 days of culture as observed in SEM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.