Trajectory estimation from stereo image sequences remains a fundamental challenge in Visual Simultaneous Localization and Mapping (V-SLAM). To address this, we propose a novel approach that focuses on the identification and matching of keypoints within a transformed domain that emphasizes visually significant features. Specifically, we propose to perform V-SLAM in a VIsual Localization Domain (VILD), i.e., a domain where visually relevant feature are suitably represented for analysis and tracking. This transformed domain adheres to information-theoretic principles, enabling a maximum likelihood estimation of rotation, translation, and scaling parameters by minimizing the distance between the coefficients of the observed image and those of a reference template. The transformed coefficients are obtained from the output of specialized Circular Harmonic Function (CHF) filters of varying orders. Leveraging this property, we employ a first-order approximation of the image-series representation, directly computing the first-order coefficients through the application of first-order CHF filters. The proposed VILD provides a theoretically grounded and visually relevant representation of the image. We utilize VILD for point matching and tracking across the stereo video sequence. The experimental results on real-world video datasets demonstrate that integrating visually-driven filtering significantly improves trajectory estimation accuracy compared to traditional tracking performed in the spatial domain.
Read full abstract