Soccer match attendance is an example of group behavior with noisy context that can only be approximated by a limited set of quantifiable factors. However, match attendance is representative of a wider spectrum of context-based behaviors for which only the aggregate effect of otherwise individual decisions is observable. Modeling of such behaviors is desirable from the perspective of economics, psychology, and other social studies with prospective use in simulators, games, product planning, and advertising. In this paper, we evaluate the efficiency of different neural network architectures as models of context in attendance behavior by comparing the achieved prediction accuracy of a multilayer perceptron (MLP), an Elman recurrent neural network (RNN), a time-lagged feedforward neural network (TLFN), and a radial basis function network (RBFN) against a multiple linear regression model, an autoregressive moving average model with exogenous inputs, and a naive cumulative mean model. We show that the MLP, TLFN, and RNN are superior to the RBFN and achieve comparable prediction accuracy on datasets of three teams from the English Football League Championship, which indicates weak importance of context transition modeled by the TLFN and the RNN. The experiments demonstrate that all neural network models outperform linear predictors by a significant margin. We show that neural models built on individual datasets achieve better performance than a generalized neural model constructed from pooled data. We analyze the input parameter influences extracted from trained networks and show that there is an agreement between nonlinear and linear measures about the most significant attributes.