A description of the motions of a relativistic string with massive ends (for the model with a finite mass on the first end and an infinite mass on the second end) is proposed. This approach uses the expansion of the string world surface into a series that is not reduced to the ordinary Fourier series due to the nonlinearity of the problem. The state equation of the string is derived from the mass shell condition for its end. The string motions are classified, allowing linearization of the boundary condition by a natural parametrization of the trajectory of the moving end. The set of such world surfaces is shown to be limited; for the special cases of 2+1 - and 3+1-dimensional Minkowski spaces, all of them reduce to a helicoid.
Read full abstract