In this paper, we study the dynamic fracture of a dissimilar chain composed of two different mass-spring chains and connected with other springs. The propagation of the fault (crack) is realized under externally applied moving forces. In comparison with a homogeneous double chain, the considered structure displays some new essential features of steady-state crack propagation. Specifically, the externally applied forces are of a different strength, unlike a static case, and should be appropriately chosen to satisfy the equilibrium of the structure. Moreover, there exists a gap in the range of crack speeds where the steady-state fracture cannot occur. We analyse the admissibility of solutions for different model parameters and crack speeds. We complement analytical findings with numerical simulations to validate our results.This article is part of the theme issue ‘Modelling of dynamic phenomena and localization in structured media (part 1)’.