Soil samples collected from an aqueous film-forming foam (AFFF)-impacted sandy soil formation at two depth intervals above the water table were used in bench-scale column experiments to evaluate the release of poly- and perfluoroalkyl substances (PFASs) under different degrees of water saturation. Artificial rainwater was applied to the soils under constant and variably saturated conditions. Results from constant saturation experiments suggest that retention of PFAS mass at air-water interfaces was evident in the deep soil (foc<0.00068g/g), particularly for longer chain and zwitterionic compounds, while PFAS mass release from the shallow soil (foc=0.0034g/g) was consistent with kinetically controlled desorption from the soil. The release profiles for the perfluoroalkyl sulfonamides (FASAs) differed from other PFASs examined, with more FASAs generally being eluted under fully saturated conditions from both the shallow and deep soils. Importantly, variably saturated conditions resulted in more PFAS eluting from the soils: the average release rate of PFHxS from both soils was 10-fold higher under variably saturated conditions than under constant conditions. Both soils retained significant fractions of the total PFAS mass even after extensive flushing (51-83.8% for PFOS). These results suggest that PFAS transport in vadose zone soils is influenced by air-water interfaces, but solid-phase desorption also plays a role. Overall, these results are consistent with observations in the field and serve to confirm key mechanisms that control PFAS leaching.
Read full abstract