We present an updated characterization of the TOI-1685 planetary system, which consists of a P b = 0.69 day ultra-short-period super-Earth planet orbiting a nearby (d = 37.6 pc) M2.5V star (TIC 28900646, 2MASS J04342248+4302148). This planet was previously featured in two contemporaneous discovery papers, but the best-fit planet mass, radius, and bulk density values were discrepant, allowing it to be interpreted either as a hot, bare rock or a 50% H2O/50% MgSiO3 water world. TOI-1685 b will be observed in three independent JWST Cycle 2 programs, two of which assume the planet is a water world, while the third assumes that it is a hot rocky planet. Here we include a refined stellar classification with a focus on addressing the host star’s metallicity, an updated planet radius measurement that includes two sectors of TESS data and multicolor photometry from a variety of ground-based facilities, and a more accurate dynamical mass measurement from a combined CARMENES, InfraRed Doppler, and MAROON-X radial velocity data set. We find that the star is very metal-rich ([Fe/H] ≃ +0.3) and that the planet is systematically smaller, lower mass, and higher density than initially reported, with new best-fit parameters of R pl = 1.468 −0.051+0.050 R ⊕ and M pl = 3.03−0.32+0.33 M ⊕. These results fall in between the previously derived values and suggest that TOI-1685 b is a hot rocky planet with an Earth-like density (ρ pl = 5.3 ± 0.8 g cm−3, or 0.96 ρ ⊕), high equilibrium temperature (T eq = 1062 ± 27 K), and negligible volatiles, rather than a water world.
Read full abstract