Polyimine macrocycles are a new class of organic macrocycles with cyclic structures, well-defined molecular cavities, and multiple cooperative binding sites, which have recently aroused considerable research interest in molecular recognition and separation. Herein, we report the bonding of a [3+3] chiral polyimine macrocycle (H3L, C78H78N6O3) on thiol-functionalized silica gel using thiol-ene click chemistry to prepare a chiral stationary phase (CSP) for high performance liquid chromatography (HPLC). The fabricated column exhibited excellent chiral separation capability under both normal-phase and reversed-phase conditions. Fourteen and 10 racemates were well resolved on the column in normal-phase mode (using n-hexane/isopropanol as the mobile phase) and reversed-phase mode (using methanol/water as the mobile phase), respectively, including alcohols, esters, ethers, ketones, aldehydes, epoxides and organic acids. Moreover, the column also shows good selectivity toward positional isomers. Six positional isomers (dinitrobenzene, chloroaniline, bromoaniline, iodoaniline, nitrobrobenzene and nitrochlorobenzene) were well separated on the column. In addition, the effects of the injection mass and mobile phase composition on the separation were investigated. The column shows good reproducibility and stability after multiple injections with the relative standard deviation (RSD) (n = 5) of the retention time and resolution being < 0.96 % and 0.65 %, respectively. This study indicates that this type of chiral polyimine macrocycles is a promising chiral selector for HPLC enantioseparation and will push forward the applications of more novel chiral macrocycles for chiral chromatographic separation.