If you've not been involved in MEMS (MicroElectroMechanical Systems) technology or had the cause to use MEMS devices, then you may wonder what all the fuss is about. What are MEMS anyway? What's the difference between MEMS and MST (MicroSystems Technology)? What are the advantages over existing technologies? If you have ever found yourself pondering over such questions, then this book may be for you. As the title suggests, the main aim is to provide an introduction to MEMS by describing the processes and materials available and by using examples of commercially available devices. The intended readership are those technical managers, engineers, scientists and graduate students who are keen to learn about MEMS but have little or no experience of the technology. I was particularly pleased to note that Maluf has dedicated a whole chapter to the important (and often difficult) area of packaging. The first three chapters provide a general overview of the technology. Within the first three pages we are introduced to the MEMS versus MST question, only to discover that the difference depends on where you live! The United States prefer MEMS, while the Europeans use the handle MST. (Note to self: tell colleagues in MEMS group at Southampton). A good account is given of the basic materials used in the technology, including silicon, silicon oxide/nitride/carbide, metals, polymers, quartz and gallium arsenide. The various processes involved in the creation of MEMS devices are also described. A good treatment is given to etching and bonding in addition to the various deposition techniques. It was interesting to note that the author doesn't make a big issue of the differences between bulk and surface micromachined devices; the approach seems to be `here's your toolbag - get on with it'. One of the great strengths of this book is the coverage of commercial MEMS structures. Arising as they have, from essentially a planar technology, MEMS devices are often elaborate three-dimensional creations, and 2D drawings don't do them much justice. I have to say that I was extremely impressed with the many aesthetic isometric views of some of these wonderful structures. Pressure sensors, inkjet print nozzles, mass flow sensors, accelerometers, valves and micromirrors are all given sufficient treatment to describe the fundamental behaviour and design philosophy, but without the mathematical rigour expected for a traditional journal paper. Chapter 5 addresses the promise of the technology as a means of enabling a new range of applications. The concept of using MEMS devices as key elements within complex systems (or even microsystems!) is explored. The so-called `lab-on-a-chip' approach is described, whereby complex analytical systems are integrated onto a single chip together with the associated micropumps and microvalves. The design and fabrication of MEMS devices are important issues by themselves. A key area, often overlooked, is that of packaging. Painstaking modelling and intricate fabrication methodologies can produce resonator structures oscillating at precisely, say, 125 kHz. The device is then mounted in a dual-in-line carrier and the frequency shifts by 10 kHz because of the additional internal stresses produced. Packaging issues can't be decoupled from those of the micromachined components. Many of these issues, such as protective coatings, thermal management, calibration etc, are covered briefly in the final chapter. Overall, I found this book informative and interesting. It has a broad appeal and gives a good insight into this fascinating and exciting subject area. Neil White