We prove that there is an absolute constant A > 0 such that $$\begin{array}{l} \begin{array}{*{20}{c}} {\max } \\ { - 1 \le x \le 1} \\ \end{array}|P'(x)| \ge A\sqrt {n \cdot } \begin{array}{*{20}{c}} {\max } \\ { - 1 \le x \le 1} \\ \end{array}\,|P(x)| \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \\ \end{array}$$ for an arbitrary algebraic polynomial P of degree n whose zeros lie in the half-disk $$\left\{ {z:|z| \le 1,{\mathop{\rm Im}\nolimits} z \ge 0} \right\}$$.