ObjectivesWe have developed targeted proteomics in the context of Lyme borreliosis (LM) as a new direct diagnostic tool for detecting Borrelia proteins in the skin of patients with erythema migrans. If satisfactory, this proteomic technique could be used in addition to culture and/or PCR for disseminated infections where Borrelia detection is essential to demonstrate active infection. In these infections, the diagnosis is indirect and relies mainly on serology. MethodsWe recruited 46 patients with LM and 11 controls and collected two skin biopsies from each patient. One biopsy was used for Borrelia burgdorferi sensu lato PCR and culture and the other one was for targeted mass-spectrometry-based proteomics. Six markers of infection were selected for proteomics: OspC, flagellin, enolase, lipoprotein gi|365823350, decorin binding protein A, and glyceraldehyde-3-phosphate dehydrogenase. ResultsCulturing Borrelia from the biopsies increased the sensitivity of the methods. Among the patients included for analysis, 61% (28 patients), 61% (28), and 46% (21) were detected as positive by proteomics, PCR, and culture, respectively. PCR and proteomics were complementary. OspC and flagellin were the most frequently detected protein markers of infection by proteomics, which in some patients, detected up to nine peptides for the flagellin. DiscussionIt is possible to identify bacterial makers from the skin by proteomics. Our approach can be used to diagnose tick-borne diseases such as LM. Trial registrationclinicaltrials.gov identifier: NCT02414789.
Read full abstract