Recently, the cattle genome sequence has been completed, followed by developing a commercial single nucleotide polymorphism (SNP) chip panel in the animal genome industry. In order to increase statistical power for detecting quantitative trait locus (QTL), a number of animals should be genotyped. However, a high-density chip for many animals would be increasing the genotyping cost. Therefore, statistical inference of genotype imputation (low-density chip to high-density) will be useful in the animal industry. The purpose of this study is to investigate the effect of the reference population size and marker density on the imputation accuracy and to suggest the appropriate number of reference population sets for the imputation in Hanwoo cattle. A total of 3,821 Hanwoo cattle were divided into reference and validation populations. The reference sets consisted of 50k (38,916) marker data and different population sizes (500, 1,000, 1,500, 2,000, and 3,600). The validation sets consisted of four validation sets (Total 889) and the different marker density (5k [5,000], 10k [10,000], and 15k [15,000]). The accuracy of imputation was calculated by direct comparison of the true genotype and the imputed genotype. In conclusion, when the lowest marker density (5k) was used in the validation set, according to the reference population size, the imputation accuracy was 0.793 to 0.929. On the other hand, when the highest marker density (15k), according to the reference population size, the imputation accuracy was 0.904 to 0.967. Moreover, the reference population size should be more than 1,000 to obtain at least 88% imputation accuracy in Hanwoo cattle.