The NASA Dawn spacecraft visited asteroid 4 Vesta between 2011 and 2012 and dwarf planet 1 Ceres between 2015 and 2018 to investigate their surfaces through optical and hyperspectral imaging and their composition through gamma-ray and neutron spectroscopy. For the global mapping investigation of both proto-planets, geologic mappers employed Geographic Information System (GIS) software to map 15 quadrangles using optical and hyperspectral data and to produce views of the geologic evolution through individual maps and research papers. While geologic mapping was the core motivation of the mapping investigation, the project never aimed to produce homogeneous and consistent map representations. The chosen mapping approach and its implementation led to a number of inconsistencies regarding cartographic representation, including differential generalization through varying mapping scales, topologic inconsistencies, lack of semantic integrity, and scale consistency, and ultimately, to the management of reusable research data. Ongoing data acquisition during the mapping phase created additional challenges for the homogenization of mapping results and a potential derivation of a global map. This contribution reviews cartographic and data perspectives on the mapping investigation of Ceres and highlights (a) data sources, (b) the cartographic concept, (c) mapping conduct, and (d) dissemination as well as research-data management arrangements. It furthermore discusses decisions and experiences made during mapping and finishes with a set of recommendations from the viewpoint of the cartographic sciences.
Read full abstract