ObjectiveCarcinogenic mechanisms of heavy metals/ trace elements (HMTE) in bladder cancer (BC) are exactly unknown. Mitochondrial dysfunction (MD), oxidative stress (OS), and mitogen-activated protein kinases (MAPK) are probable carcinogenic mechanisms. The purpose is to investigate probable carcinogenic pathways of HMTE in BC using six MD genes, seven OS markers, and p38-MAPK. MethodsStudy included 125 BC/radical cystectomy (RC) patients between October 2020 and October 2022, and 72 controls. Exclusion criteria included previous neoplasm, chemo- or radiotherapy. Two samples (cancer/noncancer) were taken from RC specimens. Tissues/plasma/urine cadmium (Cd), lead (Pb), cobalt (Co), nickel (Ni), strontium (Sr), aluminium (Al), zinc (Zn), boron (B) were measured by ICP-OES. Tissue MD genes (mt-CO3, mt-CYB, mt-ATP 6, mt-ATP8, mt-CO1, mt-ND1), and serum OS markers (8-OHdG, MDA, 3-NT, AGEs, AOPP, ROS, SOD2), p38-MAPK were assessed by RT-PCR, and ELISA, respectively. ResultsBC and adjacent tissue showed higher (Al, Co, Pb, Ni, Zn, Cd,Sr), lower B concentrations, compared to controls. High tissue concentrations (Cd, Co, Pb, Ni, Sr) were associated with higher MD genes, OS, MAPK and lower SOD2 levels. The same differences were greater in 41 patients with concomitant elevation of two or more HMTE. Noninclusion of BC-related oncogenes (e.g. RAS) is a limitation. ConclusionsEvidence suggests that high BC tissue (Cd, Co, Pb, Ni, Si) concentrations are associated with over-expressed MD genes, OS, p38-MAPK and low SOD2. These findings provide important understanding keys of probable carcinogenic pathways in BC associated with HMTE. So, efforts should be performed to minimize and counteract exposure to toxic HMTE.