Nowadays, the estimation of volumetric soil water content (θ) through apparent dielectric permittivity (εa) is the most widely used method. The purpose of this study is to investigate the effect of the high iron content of two sandy loam soils on estimating their water content using two dielectric sensors. These sensors are the WET sensor operating at 20 MHz and the ML2 sensor operating at 100 MHz. Experiments on specific soil columns, in the laboratory, by mixing different amounts of water in the soils to obtain a range of θ values under constant temperature conditions were conducted. Analysis of the results showed that both sensors, based on manufacturer calibration, led to overestimation of θ. This overestimation is due to the high measured values of εa by both sensors used. The WET sensor, operating at a lower frequency and being strongly affected by soil characteristics, showed the greatest overestimation. The difference of εa values between the two sensors ranged from 14 to 19 units at the maximum actual soil water content (θm). Compared to the Topp equation, the WET sensor measures 2.3 to 2.8 fold higher value of εa. From the results, it was shown that the relationship θm-εa0.5 remained linear even in the case of these soils with high iron content and the multi-point calibration (CALALL) is a good option where individual calibration is needed.