Studies of the giant axon and synapse of third-order neurons in the squid stellate ganglion have provided a vast literature on neuronal physiology and axon transport. Large neuronal size also lends itself to comparative biochemical studies of cell body versus axon. These have focused on the regulation of synthesis, assembly, posttranslational modification and function of neuronal cytoskeletal proteins (microtubules (MTs) and neurofilaments (NFs)), the predominant proteins in axoplasm. These contribute to axonal organization, stability, transport, and impulse transmission responsible for rapid contractions of mantle muscles underlying jet propulsion. Studies of vertebrate NFs have established an extensive literature on NF structure, organization, and function; studies of squid NFs, however, have made it possible to compare compartment-specific regulation of NF synthesis, assembly, and function in soma versus axoplasm. Since NFs contain over 100 eligible sites for phosphorylation by protein kinases, the compartment-specific patterns of phosphorylation have been a primary focus of biochemical studies. We have learned that NF phosphorylation is tightly compartmentalized; extensive phosphorylation occurs only in the axonal compartment in squid and in vertebrate neurons. This extensive phosphorylation plays a key role in organizing NFs, in association with microtubules (MTs), into a stable, dynamic functional lattice that supports axon growth, diameter, impulse transmission, and synaptic activity. To understand how cytoskeletal phosphorylation is topographically regulated, the kinases and phosphatases, bound to NFs isolated from cell bodies and axoplasm, have also been studied.
Read full abstract