Abstract SCI-25The B-cell receptor (BCR) is a flexible and variable environmental sensor with no fixed ligand. The central component is surface Ig (sIg), which appears to function at several levels, mediating a “tonic” signal essential for survival and also binding to antigens via its variable (V) regions. Expression of sIg and reliance on BCR signals generally persist in neoplastic B cells. Indolent tumors, including chronic lymphocytic leukemia (CLL), allow insight into the pathogenetic role of the BCR prior to therapy as well as revealing key proteins within these pathways for drug targeting. CLL is heterogeneous, arising at two points of differentiation, generating two major subsets, one with unmutated Ig V genes (U-CLL), another with mutated Ig V genes (M-CLL). U-CLL appears to develop from naïve B cells of the natural antibody repertoire aimed against common pathogens. The clinical behavior of the two subsets differs, with U-CLL being of poorer prognosis. Evidence for antigen drive on both subsets comes from detecting “endocytosis in vivo,” whereby sIgM expression and signal capacity in blood cells are variably downmodulated, but can recover in vitro. Mysteriously, sIgD of the same presumed antigen specificity shows no evidence for endocytic downmodulation in vivo. CLL cells apparently engage antigens via sIgM in tissue sites, leading to proliferation and downmodulation, with reexpression gradually occurring during transit through the blood. Expression of CXCR4 closely follows that of sIgM, and clonal analysis reveals subpopulations of potentially dangerous cells with high sIgM/CXCR4 primed for tissue-based proliferative stimulation. In contrast to normal B cells, this is an iterative process exposing the proliferating CLL cells to further genetic changes. Overall higher sIgM levels and increased signal capacity in U-CLL likely account for more aggressive clinical behavior. BCR-induced membrane-proximal events include LYN-mediated phosphorylation of Iga/b followed by recruitment of the tyrosine kinase Syk. Signal propagation then involves Btk and PLCg2. LYN-dependent phosphorylation of CD19 also recruits the p85 subunit of PI3K, a known survival mechanism in CLL. Downstream events include upregulation of MYC proto-oncoprotein expression and induction of MYC-regulated target genes such as cyclin D2, with both proteins detected in proliferation centers. Pathways to increased cell survival include induction of the antiapoptotic MCL1 protein and inactivation of the proapoptotic activity of BIM(EL/L) via enhanced phosphorylation. The ability to phosphorylate BIM(EL) was highly correlated with mutational status and with requirement for treatment. While these events delineate BCR-activated pathways, they provide only the skeleton. sIgM signaling is highly dependent on the polymeric nature of the antigen, with responses to solid-phase stimulus producing a higher and more prolonged signal than the soluble form. Clearly, CLL cells have to integrate BCR signals with those from other receptors for the multitude of microenvironmental factors. This is a two-way process, since BCR signals operate “inside-out” by modulating the expression of molecules involved in migration and adhesion. The fact that the glycan composition of sIgM is also modulated to a mannosylated form, potentially able to bind to mannose-binding lectins, could contribute to the latter. Clinical effects of Syk, Btk and PI3Kd inhibitors, known to affect BCR signaling and potentially other pathways, are both explicable and exciting. Disclosures:No relevant conflicts of interest to declare.
Read full abstract