We solve the shifted wave equation ∂2∂t2φ(x,t)=(Δx+ρ2)φ(x,t)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} \\frac{\\partial ^2}{\\partial t^2}\\varphi (x,t)=(\\Delta _x+\\rho ^2)\\varphi (x,t) \\end{aligned}$$\\end{document}on a non-compact simply connected harmonic manifold with mean curvature of the horospheres 2ρ>0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$2\\rho >0$$\\end{document}. We give an explicit representation of the solution as the inverse dual Abel transform of the spherical means of their initial conditions using the local injectivity of the Abel transform and symmetry properties of the spherical mean value operator. Furthermore, we investigate the shifted wave equation using the Fourier transform on harmonic manifolds of rank one. Additionally, we obtain a result analogous to the classical Paley–Wiener theorem and use it to show an asymptotic Huygens principle as well as asymptotic equidistribution of the energy of a solution of the shifted wave equation under assumptions on the Harish–Chandra type c\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extbf{c}$$\\end{document}-function.