Aircraft engine rotors, invariably supported on rolling element bearings with little damping, are particularly sensitive to rotor imbalance and sudden maneuver loads. Most engines incorporate squeeze film dampers (SFDs) as a means to dissipate mechanical energy from rotor motions and to ensure system stability. The paper experimentally quantifies the dynamic forced performance of two end sealed SFDs with dimensions and an operating envelope akin to those in actual jet engine applications. The current experimental results complement and extend prior research conducted with open ends SFDs (San Andrés, 2012, “Damping and Inertia Coefficients for Two Open Ends Squeeze Film Dampers With a Central Groove: Measurements and Predictions,” ASME J. Eng. Gas Turbines Power, 134, p. 102506). In the tests, two journals make for two SFD configurations, both with a diameter D = 127 mm and nominal radial film clearance c = 0.127 mm. One short length damper has film lands with extent L = 12.7 mm, while the other has 25.4 mm ( = 2L) land lengths. A central groove of length LG = L and depth at ¾ L separates the film lands. A light viscosity lubricant is supplied into the central groove via three orifices, 120 deg apart, and then flows through the film lands whose ends are sealed with tight piston rings. The oil pushes through the piston rings to discharge at ambient pressure. In the tests, a static load device pulls the damper structure to increasing eccentricities (maximum 0.38c) and external shakers exert single-frequency loads 50–250 Hz, inducing circular orbits with amplitudes equaling ∼5% of the film clearance. The lubricant feed and groove pressures and flow rates through the top and bottom film lands are recorded to determine the flow resistances through the film lands and the end seals. Measured dynamic pressures in the central groove are as large as those in the film lands, thus demonstrating a strong flow interaction, further intensified by the piston ring end seals which are effective in preventing side leakage. Dynamic pressures and reaction loads are substantially higher than those recorded with the open ends dampers. Comparisons to test results for two identical damper configurations but open ended (San Andrés, 2012, “Damping and Inertia Coefficients for Two Open Ends Squeeze Film Dampers With a Central Groove: Measurements and Predictions,” ASME J. Eng. Gas Turbines Power, 134, p. 102506) demonstrate at least a threefold increase in direct damping coefficients and no less than a double increment in added mass coefficients. Predictions from a physics-based model that includes the central groove, the lubricant feed holes, and the end seals' flow conductances are in agreement with the test results for the short length damper. For the long damper, the predicted damping coefficients are in good agreement with the measurements, while the added masses are under-predicted by ∼25%.
Read full abstract