In the field of Prognostics and Health Management (PHM), recent years have witnessed a significant surge in the application of machine learning (ML). Despite this growth, the field grapples with a lack of unified guidelines and systematic approaches for effectively implementing these ML techniques and comprehensive analysis regarding industrial open-source data across varied scenarios. To address these gaps, this paper provides a comprehensive review of ML approaches for diagnostics and prognostics of industrial systems using opensource datasets from PHM Data Challenge Competitions held between 2018 and 2023 by PHM Society and IEEE Reliability Society and summarizes a unified ML framework. This review systematically categorizes and scrutinizes the problems, challenges, methodologies, and advancements demonstrated in these competitions, highlighting the evolving role of both conventional machine learning and deep learning in tackling complex industrial tasks related to detection, diagnosis, assessment, and prognosis. Moreover, this paper delves into the common challenges in PHM data challenge competitions by emphasizing data-related and model-related issues and evaluating the limitations of these competitions. The potential solutions to address these challenges are also summarized. Finally, we identify key themes and potential directions for future research, providing opportunities and prospects for next-generation ML-PHM development in PHM domain.