The use of plastic is very widespread in the world and the spread of plastic waste has also reached the oceans. Observing marine debris is a serious threat to the management system of this pollution. Because it takes years to recycle the current wastes, while their amount increases every day. The importance of mathematical models for plastic waste management is that it provides a framework for understanding the dynamics of this waste in the ocean and helps to identify effective strategies for its management. A mathematical model consisting of three compartments plastic waste, marine debris, and recycle is studied in the form of a system of ordinary differential equations. After describing the formulation of the model, some properties of the model are given. Then the equilibria of the model and the basic reproduction number are obtained by the next generation matrix method. In addition, the global stability of the model are proved at the equilibria. The bifurcations of the model and sensitivity analysis are also used for better understanding of the dynamics of the model. Finally, the numerical simulations of discussed models are given and the model is examined in several aspects. It is proven that the solutions of the system are positive if initial values are positive. It is shown that there are two equilibria E0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$E^0$$\\end{document} and E∗\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$E^*$$\\end{document} and if BR<1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${{\\mathcal {B}}}{{\\mathcal {R}}}<1$$\\end{document}, it is proven that E0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$E^0$$\\end{document} is globally stable, while when BR>1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${{\\mathcal {B}}}{{\\mathcal {R}}}>1$$\\end{document}, the equilibrium E∗\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$E^*$$\\end{document} exists and it is globally stable. Also, at BR=1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${{\\mathcal {B}}}{{\\mathcal {R}}}=1$$\\end{document} the model exhibits a forward bifurcation. The sensitivity analysis of BR\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${{\\mathcal {B}}}{{\\mathcal {R}}}$$\\end{document} concludes that the rates of waste to marine, new waste, and the recycle rate have most effect on the amount of marine debris.