Anaerobic bacteria are normal inhabitants of the human commensal microbiota and play an important role in various human infections. Tedious and time-consuming, antibiotic susceptibility testing is not routinely performed in all clinical microbiology laboratories, despite the increase in antibiotic resistance among clinically relevant anaerobes since the 1990s. β-lactam and metronidazole are the key molecules in the management of anaerobic infections, to the detriment of clindamycin. β-lactam resistance is usually mediated by the production of β-lactamases. Metronidazole resistance remains uncommon, complex, and not fully elucidated, while metronidazole inactivation appears to be a key mechanism. The use of clindamycin, a broad-spectrum anti-anaerobic agent, is becoming problematic due to the increase in resistance rate in all anaerobic bacteria, mainly mediated by Erm-type rRNA methylases. Second-line anti-anaerobes are fluoroquinolones, tetracyclines, chloramphenicol, and linezolid. This review aims to describe the up-to-date evolution of antibiotic resistance, give an overview, and understand the main mechanisms of resistance in a wide range of anaerobes.