The landscape of healthcare is experiencing a digitalization shift, transferring many medical activities to the patients’ homes, a phenomenon commonly referred to as Hospital-at-Home. While Internet of Things (IoT) devices facilitate the building of such systems, there is a need for powerful middleware that encapsulates device-to-device communication, and enables the construction of user-friendly, secure, and robust Hospital-at-Home systems. A key challenge for such middleware is to build a trustworthy and lightweight key management system allowing different devices in the system to exchange messages securely. In this paper we present a simple, easily manageable and scalable such architecture which, in addition, supports long term data protection using post-quantum cryptographic primitives. Our proposed solution utilizes a Merkle tree to enable the IoT devices to establish trust between each other automatically, even in the absence of Internet connection. We have implemented the architecture and present performance figures as well as a security analysis of our approach.
Read full abstract