Abstract

As networks grow larger in size and complexity, their monitoring is becoming an increasing challenge because of the required polling performance and also due to heterogeneity of devices. As it turns out, SNMP (Simple Network Management Protocol) is by far the most popular monitoring protocol. However, due to the increase in the number of network devices, it becomes necessary to employ multiple SNMP managers, which is not cost-effective due to the hardware requirements. Additionally, the different proprietary SNMP implementations require custom configuration very often, as new devices are being incorporated into the network. Therefore, current SNMP managers not only require capabilities for large-scale monitoring but also a high degree of flexibility and programmability. In response, we propose an SNMP manager architecture with a flexible multi-threaded architecture, which effectively reduces the hardware resources necessary to poll the increasing number of SNMP agents. In addition, it features a scripting component to deal with the different data representations caused by proprietary implementations. Our experience has shown that SNMP agents can have high variability in their response times. Actually, our findings show a strong correlation between high response times and CPU load. As a solution, we propose and analyze novel adaptive polling algorithms that decrease the load on agents' CPUs while keeping the desired polling rate for fast agents. Finally, we present several real-world use cases where we show the benefits of the polling algorithms and the scripting component, by means of extensive measurement campaigns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.