Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in Western countries, and the gut-liver axis is implicated in liver disease pathogenesis. We hypothesize that advanced liver steatosis accompanies an increase in hepatic inflammation, colonic secondary bile acids (BAs) and secondary BA-producing bacteria in mice fed a high-fat (HF) diet model of obesity. Four-week old male C57BL/6 mice were fed an HF (45% energy) or a low-fat (LF) (10% energy) diet for 21 weeks. At the end of the study, body weight and body fat percentage in the HF group were 0.23- and 0.41-fold greater than those in the LF group, respectively. Similarly, the HF group exhibited an increase in hepatic lipid droplets, inflammatory cell infiltration, inducible nitric oxide synthase, and hepatocellular ballooning (but without hepatic Mallory bodies) which are key histological features of advanced hepatic steatosis. Furthermore, RNA sequencing, qPCR and immunohistological methods found that nicotinamide n-methyltransferase and selenoprotein P, two inflammation-related hepatic genes, were upregulated in the HF group. Consistent with the hepatic inflammation, the levels of proinflammatory plasma-cytokines (TNF-α and IL6), colonic secondary BAs (LCA, DCA) and secondary BA producing bacteria (e.g., lactobacillaceae/Lachnospiraceae) were at least 0.5-fold greater in the HF group compared with the LF group. Taken together, the data demonstrate that advanced liver-steatosis is concurrent with an elevated level of hepatic inflammation, colonic secondary bile acids and their associated bacteria in mice fed an HF diet. These data suggest a potential gut-liver crosstalk at the stage of advanced liver-steatosis.