PurposeUrethral hypospadias, a common congenital malformation in males, is closely linked with disruptions in uroepithelial cell (UEC) processes. Evidence exists reporting that urine-derived exosomes (Urine-Exos) enhance UEC proliferation and regeneration, suggesting a potential role in preventing hypospadias. However, the specific influence of Urine-Exos on urethral hypospadias and the molecular mechanisms involved are not fully understood. This study focuses on investigating the capability of Urine-Exos to mitigate urethral hypospadias and aims to uncover the underlying molecular mechanisms. MethodsBioinformatics analysis was performed to identify key gene targets in Urine-Exos potentially involved in hypospadias. Subsequent in vitro and in vivo experiments were conducted to validate the regulatory effects of Urine-Exos on hypospadias. ResultsBioinformatics screening revealed syndecan-1 (SDC1) as a potential pivotal gene for the prevention of hypospadias. In vitro experiments demonstrated that Urine-Exos enhanced the proliferation and migration of UECs by transferring SDC1 and inhibiting cell apoptosis. Notably, Urine-Exos upregulated β-catenin expression through SDC1 transfer, further promoting UEC proliferation and migration. These findings were confirmed in a congenital hypospadias rat model induced by di(2-ethylhexyl) phthalate (DEHP). ConclusionThis study reveals the therapeutic potential of Urine-Exos in hypospadias, mediated by the SDC1/β-catenin axis. Urine-Exos promote UEC proliferation and migration, thereby inhibiting the progression of hypospadias. These findings offer new insights and potential therapeutic targets for the management of congenital malformations.