The cellular and molecular basis of sex-dimorphic autoimmune diseases, such as the CNS demyelinating disease multiple sclerosis (MS), remains unclear. Our studies in the SJL mouse model of MS, experimental autoimmune encephalomyelitis (EAE), reveal that sex-determined differences in Il33 expression by innate immune cells in response to myelin peptide immunization regulate EAE susceptibility. IL-33 is selectively induced in PLP139-151-immunized males and activates type 2 innate lymphoid cells (ILC2s), cells that promote and sustain a nonpathogenic Th2 myelin-specific response. Without this attenuating IL-33 response, females generate an encephalitogenic Th17-dominant response, which can be reversed by IL-33 treatment. Mast cells are one source of IL-33 and we provide evidence that testosterone directly induces Il33 gene expression and also exerts effects on the potential for Il33 gene expression during mast cell development. Thus, in contrast to their pathogenic role in allergy, we propose a sex-specific role for both mast cells and ILC2s as attenuators of the pathogenic Th response in CNS inflammatory disease.