There is extensive data pointing to offspring outcomes related to maternal life incidents, but there is less research concerning the association between paternal life events and progeny brain development and behaviour. As male gametogenesis is a continuous process, the incidences happening in life can modify the epigenetic regulation, altering the offspring's development and behaviour. The present study evaluates the effects of paternal stress during different life periods on their offspring's learning ability, memory, morphological and biochemical changes in the prefrontal cortex and hippocampus in the rat model. Four weeks' old male rats were subjected to five variable stressors at the rate of one per day. Stress received male rats were bred with naive female rats for 1 to 3 nights. The offspring's learning and memory were assessed by the Morris water maze test and automated Y maze. Following behavioural studies, offspring were euthanized to examine global DNA methylation, neurotransmitter levels, namely acetylcholine, glutamate in the hippocampus and frontal cortex. The offspring of stress-induced animals exhibited a delay in acquiring learning and defect in memory and altered global DNA methylation in the hippocampus (p=0.000124). There was significant reduction of acetylcholine and glutamate levels in hippocampus (p=0.000018, p=0.00001, respectively) and in prefrontal cortex (p=0.00001, p=0.00001, respectively). HPA axis of offspring was altered considerably (p=0.00001). The histomorphometry of the prefrontal cortex and different hippocampal regions revealed a statistically significant (p<0.05) reduction in neuronal numbers in the offspring of stressed animals compared to that of control. These impacts were markedly high in the offspring of fathers who received stress during both pubertal and adult periods. The findings of this study demonstrate that paternal stress can impact offspring learning and memory.
Read full abstract