Odontocetes (toothed whales) are considered sentinel species in the marine environment because of their high trophic position, long life spans, and blubber that accumulates lipophilic contaminants. Cytochrome P4501A1 (CYP1A1) is a biomarker of exposure and molecular effects of certain persistent organic pollutants. Immunohistochemistry was used to visualize CYP1A1 expression in blubber biopsies collected by non-lethal sampling methods from 10 species of free-ranging Hawaiian odontocetes: short-finned pilot whale, melon-headed whale, pygmy killer whale, common bottlenose dolphin, rough-toothed dolphin, pantropical spotted dolphin, Blainville's beaked whale, Cuvier's beaked whale, sperm whale, and endangered main Hawaiian Islands insular false killer whale. Significantly higher levels of CYP1A1 were observed in false killer whales and rough-toothed dolphins compared to melon-headed whales, and in general, trophic position appears to influence CYP1A1 expression patterns in particular species groups. No significant differences in CYP1A1 were found based on age class or sex across all samples. However, within male false killer whales, juveniles expressed significantly higher levels of CYP1A1 when compared to adults. Total polychlorinated biphenyl (∑PCBs) concentrations in 84% of false killer whales exceeded proposed threshold levels for health effects, and ∑PCBs correlated with CYP1A1 expression. There was no significant relationship between PCB toxic equivalent quotient and CYP1A1 expression, suggesting that this response may be influenced by agonists other than the dioxin-like PCBs measured in this study. No significant differences were found for CYP1A1 expression among social clusters of false killer whales. This work provides a foundation for future health monitoring of the endangered stock of false killer whales and other Hawaiian odontocetes.