AbstractVibrational communication in the Auchenorrhyncha is an avenue of growing interest, with many pesticide‐free vibrational pest control programmes against auchenorrhynchan agricultural pests continuing to be developed around the world. Passion vine hoppers (PVH), Scolypopa australis (Walker) (Hemiptera: Ricaniidae), are an economically damaging pest species in New Zealand, where they facilitate the growth of sooty mould in kiwifruit orchards. Scolypopa australis is already known to use vibrational signals, therefore a further understanding of the spectral and temporal characteristics of its calls will be an essential next step to developing vibration‐based pest management strategies. Here, we aimed to characterise the properties of spontaneous S. australis calls in solitary and intrasexual communication contexts. We used laser Doppler vibrometry to record vibrational signals produced by male and female S. australis (separately), when in groups of three or individually. We sorted calls and call sub‐units (syllables) into groups based on cluster analyses of various spatio‐temporal parameters. We define four male calls and three female calls, and newly describe a ‘two‐syllable’ calling structure that may be involved in male intrasexual competition. Certain syllables were more prevalent at the beginning or end of calls for males, and were more homogenously distributed throughout calls for females. The types of calls used differed between single males and groups, with more energetically intense call types observed in the group settings. Additional studies on the behavioural context of S. australis vibrational calls and their responses to playback of such calls will be necessary to assess the viability of vibration‐based pest management for this species.
Read full abstract