Imai rats exhibit spontaneous focal glomerulosclerosis (FGS) with progressive proteinuria and hyperlipidemia leading to renal insufficiency by age 34 weeks. Recently, we reported marked down-regulations of skeletal muscle and adipose tissue lipoprotein lipase (LPL) and very low-density lipoprotein (VLDL) receptor in male Imai rats at 32 weeks of age. Dietary protein restriction and oral adsorbent AST-120 (AST) have been shown to slow progression of renal disease and attenuate hyperlipidemia in the Imai rats. This study tested the hypothesis that amelioration of proteinuria by protein restriction or use of oral adsorbent AST-120 beginning at 10 weeks of age may improve renal disease and LPL and VLDL receptor deficiencies in Imai rats. Ten-week-old male Imai rats were randomly assigned to those fed either a regular diet, low protein diet (LPD), or regular diet containing the adsorbent preparation, AST-120. Ten-week-old male Sprague-Dawley rats served as controls. The animals were observed for 24 weeks. Six rats were included in each group. All diets were prepared in powder form. The untreated 34-week-old Imai rats showed severe proteinuria, hypoalbuminemia, 50% reduction in creatinine clearance, hypercholesterolemia, hypertriglyceridemia, and elevated plasma VLDL concentration. This was associated with significant reductions in plasma post-heparin LPL activity, hepatic lipase activity, as well as adipose tissue and skeletal muscle immunodetectable LPL and VLDL receptor proteins. Protein restriction mitigated the decline in creatinine clearance, ameliorated proteinuria, hypoalbuminemia, hypertension, and hypercholesterolemia, lowered plasma VLDL, and improved plasma postheparin LPL activity, hepatic lipase activity, LPL, and VLDL receptor proteins in skeletal muscle and adipose tissue. Similar improvements were observed in all parameters with AST administration. Moderate protein restriction and use of oral adsorbent can slow progression of renal disease and, thereby, ameliorate LPL, hepatic lipase, and VLDL receptor deficiencies and the associated hyperlipidemia in rats with spontaneous FGS.