Male CF-1 mice were tested 48 h after training on a one trial step-through inhibitory avoidance task. Immediately post-training, intraperitoneal (i.p.) injections of the antiepileptic gabapentin (1-(aminomethyl) cyclohexaneacetic acid) (GBP, 10 mg/kg) enhanced retention performance. The effect was prevented by atropine, a central muscarinic cholinergic receptor antagonist (0.5 mg/kg, i.p.) administered after training but 10 min prior to GBP treatment. In contrast, neither methylatropine (0.5 mg/kg, i.p.), a peripherally acting muscarinic receptor blocker, nor mecamylamine (5 mg/kg, i.p.) or hexamethonium (5 mg/kg, i.p.), two cholinergic nicotinic receptor antagonists, prevented the effects of post-training GBP on retention performance. Low subeffective doses of the central acting anticholinesterase physostigmine (35 mg/kg, i.p.) administered immediately after training, and GBP (5 mg/kg, i.p.), given 10 min after training, significantly enhanced retention performance. The effects of GBP (5 mg/kg, i.p.) were not influenced by the peripherally acting anticholinesterase neostigmine (150 mg/kg, i.p.). Considered together, these findings suggest a disinhibitory action of GBP on the activity of central muscarinic cholinergic mechanisms that are involved in memory consolidation.