Biopsy is considered the gold standard for diagnosing brain tumors, but its invasive nature can pose risks to patients. Additionally, tissue analysis can be cumbersome and inconsistent among observers. This research aims to develop a cost-effective, non-invasive, MRI-based computer-aided diagnosis tool that can reliably, accurately and swiftly identify brain tumor grades. Our system employs ensemble deep learning (EDL) within an MRI multiclass framework that includes five datasets: two-class (C2), three-class (C3), four-class (C4), five-class (C5) and six-class (C6). The EDL utilizes a majority voting algorithm to classify brain tumors by combining seven renowned deep learning (DL) models-EfficientNet, VGG16, ResNet18, GoogleNet, ResNet50, Inception-V3 and DarkNet-and seven machine learning (ML) models, including support vector machine, K-nearest neighbour, Naïve Bayes, decision tree, linear discriminant analysis, artificial neural network and random forest. Additionally, local interpretable model-agnostic explanations (LIME) are employed as an explainable AI algorithm, providing a visual representation of the CNN's internal workings to enhance the credibility of the results. Through extensive five-fold cross-validation experiments, the DL-based majority voting algorithm outperformed the ML-based majority voting algorithm, achieving the highest average accuracies of 100 ± 0.00%, 98.55 ± 0.35%, 98.47 ± 0.63%, 95.34 ± 1.17% and 96.61 ± 0.85% for the C2, C3, C4, C5 and C6 datasets, respectively. Majority voting algorithms typically yield consistent results across different folds of the brain tumor data and enhance performance compared to any individual deep learning and machine learning models.
Read full abstract