Metabolic flux analysis implies mass isotopomer distribution analysis and determination of mass isotopologue fractions (IFs) of proteinogenic amino acids of cell cultures. In this work, for the first time, this type of analysis is comprehensively investigated in terms of measurement uncertainty by calculating and comparing budgets for different mass spectrometric techniques. The calculations addressed amino acids of Pichia pastoris grown on 10% uniformly (13)C labeled glucose. Typically, such experiments revealed an enrichment of (13)C by at least one order of magnitude in all proteinogenic amino acids. Liquid chromatography-time-of-flight mass spectrometry (LC-TOFMS), liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-mass spectrometry (GC-MS) analyses were performed. The samples were diluted to fit the linear dynamic range of the mass spectrometers used (10 μM amino acid concentration). The total combined uncertainties of IFs as well as the major uncertainty contributions affecting the IFs were determined for phenylalanine, which was selected as exemplary model compound. A bottom-up uncertainty propagation was performed according to Quantifying Uncertainty in Analytical Measurement and using the Monte Carlo method by considering all factors leading to an IF, i.e., the process of measurement and the addition of (13)C-glucose. Excellent relative expanded uncertainties (k = 1) of 0.32, 0.75, and 0.96% were obtained for an IF value of 0.7 by LC-MS/MS, GC-MS, and LC-TOFMS, respectively. The major source of uncertainty, with a relative contribution of 20-80% of the total uncertainty, was attributed to the signal intensity (absolute counts) uncertainty calculated according to Poisson counting statistics, regardless which of the mass spectrometry platforms was used. Uncertainty due to measurement repeatability was of importance in LC-MS/MS, showing a relative contribution up to 47% of the total uncertainty, whereas for GC-MS and LC-TOFMS the average contribution was lower (30 and 15%, respectively). Moreover, the IF actually present also depends on the isotopic purity of the carbon sources. Therefore, in the uncertainty calculation a carbon source purity factor was introduced and a minor contribution to the total uncertainty was observed. The results obtained by uncertainty calculation performed according to the Monte Carlo method were in agreement with the uncertainty value of the Kragten approach and showed a Gaussian distribution.
Read full abstract