Abstract
Thermodynamic data are suitable subject for investigating strategies and concepts for the evaluation of complete measurement uncertainty budgets in situations where the measurand cannot be expressed in a mathematical formula. Some suitable approaches are the various forms of Monte Carlo simulations in combination with computer-intensive statistical methods that are directed to an evaluation of empirical distribution curves for the uncertainty budget. Basis of the analysis is a cause-and-effect diagram. Some experience is available with cause-and-effect analysis of thermodynamic data derived from spectrophotometric data. Another important technique for the evaluation of thermodynamic data is glass-electrode potentiometry. On basis of a newly derived cause-and-effect diagram, a complete measurement uncertainty budget for the determination of the acidity constants of phosphoric acid by glass-electrode potentiometry is derived. A combination of Monte Carlo and bootstrap methods is applied in conjunction with the commercially available code SUPERQUAD. The results suggest that glass-electrode potentiometry may achieve a high within-laboratory precision because major uncertainty contributions become evident via interlaboratory comparisons. This finding is further underscored by analysing available literature data.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have